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Abstract

In light of the grammar given by Ji for the (α,β )-Eulerian polynomials introduced

by Carlitz and Scoville, we provide a labeling scheme for increasing binary trees. In

this setting, we obtain a combinatorial interpretation of the γ-coefficients of the α-

Eulerian polynomials in terms of forests of planted 0-1-2-plane trees, which special-

izes to a combinatorial interpretation of the γ-coefficients of the derangement polyno-

mials in the same spirit. By means of a decomposition of an increasing binary tree into

a forest, we find combinatorial interpretations of the sums involving two identities of

Ji, one of which can be viewed as (α,β )-extensions of the formulas of Petersen and

Stembridge.

Keywords: Context-free grammars, grammatical labelings, increasing binary trees, (α,β )-

Eulerian polynomials, γ-positivity.

AMS Classification: 05A15, 05A19

1



1 Introduction

The objective of this paper is to explore a labeling scheme for increasing binary trees as

an alternative combinatorial interpretation of the (α,β )-Eulerian polynomials introduced

by Carlitz and Scoville [2]. A grammatical treatment of these polynomials has been given

by Ji [6] via a labeling scheme for permutations. Employing the grammatical calculus, Ji

obtained (α,β )-extensions of the formulas of Petersen and Stembridge.

We begin with a combinatorial setting of the (α,β )-Eulerian polynomials in terms of

increasing binary trees. Based on an equivalent definition of Ji relying on the number of

left-to-right minima and the number of right-to-left minima of a permutation, we observe

that two particular leaves of an increasing binary tree, called the a-leaf and the b-leaf, play

a special role. Then we move on to define the α-vertices and the β -vertices, and add the

α-labels and the β -labels to certain internal vertices, while adopting the (x,y)-labeling for

the leaves, as given in [3] for the bivariate Eulerian polynomials.

In fact, the two special leaves (the a-leaf and the b-leaf) can be considered as two poles

to stretch a binary tree aligned on a horizontal line, which is reminiscent of the decompo-

sition of a doubly rooted tree into a linear order of rooted trees in Joyal’s proof of Cayley’s

formula [8]. More precisely, with these two special vertices at disposal, an increasing binary

tree can be decomposed into a forest of planted increasing binary trees. Such a decompo-

sition gives rise to a combinatorial interpretation of the γ-coefficients of the α-Eulerian

polynomials in terms of forests of planted 0-1-2-plane trees. An interpretation in the per-

mutation setting has been given by Ji-Lin [7] by devising a group action.

The idea of the labeling scheme for the (α,β )-Eulerian polynomials can be adapted

to a grammar of Dumont related to the derangement polynomials. In this setting, we are

led to a combinatorial interpretation of the γ-coefficients of the derangement polynomials

and the q-derangement polynomials (with respect to the number of cycles), in terms of

forests of planted increasing 0-1-2-plane trees, where the exponents of q are connected

with the number of components of a forest. This topic has been extensively studied, see,

for example, [9–15].

The grammatical labelings of increasing binary trees make it possible to give combi-

natorial interpretations of the sums involving the identities of Ji. We first realize that the

number of interior peaks of a permutation can be read off from a labeling of increasing bi-
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nary trees. For the rest, the decomposition of an increasing binary tree is the key ingredient

all along.

2 The (α,β )-Eulerian polynomials

For n ≥ 1, let [n] = {1,2, . . . ,n}. Given a permutation σ = σ1 · · ·σn of [n], an index i (2 ≤
i ≤ n) is called an ascent if σi−1 < σi, and an index i (1 ≤ i ≤ n−1) is called a descent if

σi > σi+1. Let asc(σ) and des(σ) denote the number of ascents and the number of descents

of σ , respectively.

Carlitz and Scoville [2] introduced an extension of the bivariate Eulerian polynomials,

denoted by An(x,y |α,β ), which are called the (α,β )-Eulerian polynomials by Ji [6]. They

are defined by

An(x,y |α,β ) = ∑
σ∈Sn+1

xasc(σ)ydes(σ)
α

lrmax(σ)−1
β

rlmax(σ)−1, (2.1)

where Sn+1 is the set of permutations of [n+1], lrmax(σ) and rlmax(σ) denote the number

of left-to-right maxima and the number of right-to-left maxima of σ , respectively.

By taking complement of a permutation and exchanging the roles of x and y, Ji [6]

presented an equivalent definition

An(x,y |α,β ) = ∑
σ∈Sn+1

xdes(σ)yasc(σ)
α

lrmin(σ)−1
β

rlmin(σ)−1, (2.2)

where lrmin(σ) and rlmin(σ) denote the number of left-to-right minima and the number of

right-to-left minima of σ , respectively. The initial values of An(x,y |α,β ) are given below,

A0(x,y |α,β ) = 1,

A1(x,y |α,β ) = xβ + yα,

A2(x,y |α,β ) = xyα + xyβ +2xyαβ + x2
β

2 + y2
α

2.

Ji [6] found a context-free grammar for the (α,β )-Eulerian polynomials, which can be

paraphrased as

G = {a → αay, b → βbx, x → xy, y → xy}. (2.3)

By providing a grammatical labeling for permutations, it has been shown that the (α,β )-

Eulerian polynomials can be generated by the above grammar.
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Theorem 2.1 (Ji). Let D denote the formal derivative of the grammar G. For n ≥ 0, we

have

Dn(ab) = abAn(x,y |α,β ). (2.4)

As is well-known, permutations are in one-to-one correspondence with increasing bi-

nary trees, we find that endowed with a suitable labeling scheme increasing binary trees are

conducive to a combinatorial understanding of the (α,β )-Eulerian polynomials. For this

purpose, we shall introduce the (a,b,α,β )-labeling as described below.

2.1 The (a,b,α,β )-labeling

Let n ≥ 1, and let T be an increasing binary tree on [n], where n ≥ 1. Consider the left

child of the root. If it is a leaf, we call it the leftmost leaf of T . If not, we restrict to the left

subtree of T and continue to seek the leftmost leaf. Eventually, we end up with the leftmost

leaf of T . The rightmost leaf is defined in the same way. Now we label leftmost leaf of T

by a and label the rightmost leaf of T by b.

Next, the α-vertices and the β -vertices are defined as follows. Each vertex on the path

from the root to the a-leaf (other than the root and the a-leaf) is labeled by α , which we

call an α-vertex. Each vertex on the path from the root to the b-leaf (other than the root and

the b-leaf) is labeled by β , which we call a β -vertex. The rest of the leaves are labeled like

the usual (x,y)-labeling, that is, a left leaf is labeled by x and a right leaf is labeled by y. It

can be readily seen that a pair of sibling leaves labeled by x and y correspond to an interior

peak of a permutation. For example, Figure 1 demonstrates an (a,b,α,β )-labeling of an

increasing binary tree on [9], where the corresponding permutation reads

8 4 9 6 1 2 5 3 7.

The following theorem shows that the (α,β )-Eulerian polynomials have a combinato-

rial interpretation in terms of increasing binary trees. For an increasing binary tree T , we

use w(T ) denote the weight of T with respect to the (a,b,α,β )-labeling, that is, the prod-

uct of the grammatical labels. For instance, the weight of the increasing binary in Figure 1

equals abx4y4α2β 3.

In view of the correspondence between permutations and increasing binary trees, we
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1

4(α)

8(α) 6

9

2(β )

x 3(β )

5 7(β )

b

a y y

x y x y x b

Figure 1: An example for the (a,b,α,β )-labeling.

see that the α-vertices together with the root are the left-to-right minima of the correspond-

ing permutation, whereas the β -vertices together with the root are the right-to-left minima

of the corresponding permutation. Then we arrive at the following combinatorial expan-

sion. To be consistent with the meanings of x and y in the (a,b,α,β )-labeling, we use

A∗
n(x,y |α,β ) to denote An(y,x |α,β ).

Theorem 2.2. For n ≥ 1, we have

abA∗
n(x,y |α,β ) = ∑

T
w(T ), (2.5)

where the sum ranges over the set of increasing binary trees on [n+1] with the (a,b,α,β )-

labeling.

2.2 A decomposition

The (a,b,α,β )-labeling leads us to consider a decomposition of an increasing binary tree

into a forest of planted increasing binary trees, which can be used to divide the set of

increasing binary trees into classes relative to the labeling scheme. By a planted increasing

binary tree we mean an increasing tree structure consisting of a single root or a root with an

increasing binary tree as a subtree. In the usual sense, a planted plane tree is either a single

root or a plane tree for which the root has only one child.

Next, we introduce a decomposition of an increasing binary tree T on [n] = {1,2, . . . ,n}
into a forest of planted increasing binary trees rooted at the α-vertices and the β -vertices.
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The resulting forest is called the supporting forest of T . For an increasing binary tree T on

[n], its supporting forest is on the set [2,n] = {2,3, . . . ,n}.

If we arrange the components of a supporting forest in the increasing order of their

roots, then Figure 2 is an exhibition of the supporting forest of the increasing tree in Figure

1.

2

x

3

5

x y

4

6

9

x y

y

7

x

8

y

Figure 2: A supporting forest on [2,n] with inherited labels.

The structure of a supporting forest can be used to divide the set of increasing binary

trees on [2,n] into classes whose total weight can be readily characterized. To this end, we

define the weight of a supporting forest by the following rules. First, we suppress the leaf

of a single root.

1. A single root is assigned the weight xβ + yα .

2. A root with a child has weight α +β .

3. Any leaf has the weight (or label) inherited from the original increasing binary tree.

The updated labeling of a supporting forest is illustrated in Figure 3.

Since the root of a component of a supporting forest can be either an α-vertex or a

β -vertex, we are led to the following expansion, where the underlying set of the supporting

forests has been rescaled down to [n].

Theorem 2.3. For n ≥ 0, A∗
n(x,y |α,β ) equals the total weight of supporting forests on [n].

Now we further classify supporting forests via a group action. We say that two support-

ing forests are in the same class if one can be obtained from another by swapping a leaf
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2 (xβ + yα) 3

5

x y

(α +β ) 4

6

9

x y

y

(α +β ) 7 (xβ + yα) 8 (xβ + yα)

Figure 3: A supporting forest with updated labels.

with its non-leaf sibling. Therefore, such a class of supporting forests can be represented

by a forest of planted 0-1-2 plane trees (without external leaves), bearing the following

labeling rules:

1. A single root is endowed with a weight xβ + yα .

2. A root with a child has weight α +β .

3. A degree one non-root vertex (a nonroot vertex with exactly one child) has weight

x+ y.

4. A leaf has weight xy.

2 (xβ + yα) 3

5

(α +β )

(xy)

4

6(x+ y)

9

(α +β )

(xy)

7 (xβ + yα) 8 (xβ + yα)

Figure 4: A forest of planted 0-1-2-plane trees.

Figure 4 is an illustration of a forest of planted 0-1-2-plane trees. The above classifica-

tion implies the following expansion of the (α,β )-Eulerian polynomials.

Theorem 2.4. For n ≥ 0, A∗
n(x,y |α,β ) equals the total weight of forests of planted 0-1-2-

plane trees on [n].
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2.3 The α-Eulerian polynomials

When α = β , the (α,β )-Eulerian polynomials are called the α-Eulerian polynomials in [6],

denoted by An(x,y |α). Likewise, we use A∗
n(x,y |α) to denote An(y,x |α). The labeling

scheme of the corresponding trees is called the (a,b,α)-labeling. That is, all β -vertices

are labeled by α as well. By a transformation of grammars, it is easy to see that these

polynomials are γ-positive. Recall that by a γ-expansion, we mean an expansion in x+y and

xy. A bivariate polynomial is called γ-positive if the coefficients of the γ-expansion are all

nonnegative. Evidently, the usual notion of γ-positivity for polynomials in x is equivalent to

the bivariate formulation, whereas we do need both variables x and y as far as the grammar

is concerned.

Ji and Lin [7] provided a combinatorial proof of the γ-coefficients by via a group action

on permutations. With the help of the (a,b,α)-labeling, we obtain an alternative combina-

torial interpretation of the γ-coefficients in terms of forests of planted 0-1-2-plane trees.

Setting α = β , the previous weight assignment reduces to the following rules for the

α-Eulerian polynomials. For a forest F of planted increasing 0-1-2-plane trees, we have

the following rules:

1. A single root has weight α(x+ y).

2. Other roots have weight 2α .

3. If a non-root vertex has only one child, it has weight x+ y.

4. A leaf has weight xy.

Theorem 2.5. For n ≥ 1, the α-Eulerian polynomial A∗
n(x,y |α) has the γ-expansion

∑
F

w(F),

where the sum ranges over forests of planted 0-1-2-plane trees on [n].

2.4 The derangement polynomials

As a special case of the γ-expansion of the α-Eulerian polynomials, we come to the γ-

expansion of the derangement polynomials.
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Given a permutation σ in the cycle notation, assume that the minimum element of

each cycle appears at the end, and the cycles are arranged in the increasing order of their

minimum elements. For example, (84961) (2) (53) (7) is a permutation of [9] in the cycle

notation.

For an index 1≤ i≤ n, we call it an excedance of σ if σ(i)> i, or a drop if σ(i)< i, or a

fixed point if σ(i) = i. Denote by exc(σ), drop(σ) and cyc(σ) the number of excedances,

the number of drops and the number of cycles of σ , respectively. Let Dn be the set of

permutations without fixed points. Then the derangement polynomials are defined by

dn(x) = ∑
σ∈Dn

xexc(σ),

see [1].

We can rely on the structure of forests of planted 0-1-2-plane trees to give a com-

binatorial interpretations of the γ-coefficients of the derangement polynomials, and the

q-analogue with respect to the number of cycles, that is

dn(x,y,q) = ∑
σ∈Dn

xexc(σ)ydrop(σ)qcyc(σ).

Notice that a permutation without fixed points corresponds to a complete increasing binary

tree without β -vertices whose left child is a leaf. A planted increasing binary tree is said

to be fully planted if the root has a child that is not a leaf. By relabeling the root 1 by β

and setting α = 1 in the (a,b,α,β )-labeling, an increasing binary tree corresponding to a

derangement can be decomposed into a forest of fully planted increasing binary trees for

which the root of each tree is labeled by β . Then we take group action on a fully planted

increasing 0-1-2-plane tree as follows. We label the root of each component by q. If a non-

root vertex has degree one, then label it by x+ y. A leaf is labeled by xy. Then the weight

of a forest F of fully planted increasing 0-1-2-plane trees is defined to be the product of all

the grammatical labels of F , denoted by w(F). Then we get the following γ-expansion.

Theorem 2.6. For n ≥ 1, we have

dn(x,y,q) = ∑
F

w(F), (2.6)

where F ranges over forests of fully planted increasing 0-1-2-plane trees on [n].

9



3 A labeling scheme for interior peaks

In this section, we give two labeling schemes of increasing binary trees in connection with

interior peaks of a permutation, and we find combinatorial proofs of two identities of Ji.

Given a permutation σ = σ1σ2 · · ·σn, an index i (2 ≤ i ≤ n− 1) is called an interior

peak if σi−1 < σi > σi+1, and we follow the notation M(σ) in [4] for the number of interior

peaks of σ .

It turns out that the number of interior peaks can be read off from the (a,b,α,β )-

labeling of the corresponding increasing binary tree. More precisely, a pair of sibling leaves

labeled by x and y correspond to an interior peak of the permutation. An x-leaf whose

sibling is not a y-leaf corresponds to an ascent of the permutation. Likewise, a y-leaf whose

sibling is not an x-leaf corresponds to a descent of the permutation. Observe that the labels

a and b play the role of preventing the first position and the last position from being counted

as interior peaks.

First, let us consider the (α,β )-extension of Stembridge’s identity [6, Theorem 1.8].

Theorem 3.1 (Ji). For n ≥ 1,

∑
σ∈Sn

(xy)M(σ)

(
x+ y

2

)n−2M(σ)−1

α
lrmin(σ)−1

β
rlmin(σ)−1

= ∑
σ∈Sn

xdes(σ)yn−des(σ)−1
(

α +β

2

)lrmin(σ)+rlmin(σ)−2

. (3.1)

The case for n = 1 is trivial, so we assume that n ≥ 2. To provide a combinatorial inter-

pretation of the above relation, we shall give expansions of both sides in terms of forests of

0-1-2-planted plane trees, and will show that these two expansions are equinumerous, that

is, they amount to the same total weights.

To reformulate the above relation in terms of trees, let Bn denote the set of increasing

binary trees on [n]. Given T ∈ Bn endowed with the (a,b,α,β )-labeling, let M(T ) denote

the number of vertices of T having two leaf children. As used in [3], xleaf(T ) and yleaf(T )

are referred to for the number of x-leaves and the number of y-leaves of T . Meanwhile, we

write Nα(T ) and Nβ (T ) for the number of α-vertices and the number of β -vertices of T ,

respectively.
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The relation (3.1) can be split into two parts. As for the left side, we have the following

relation, where the set of forests of planted 0-1-2-plane trees on [2,n] is denoted by Pn.

Theorem 3.2. For n ≥ 1, we have

∑
T∈Bn

(xy)M(T )
(

x+ y
2

)n−2M(T )−1

α
Nα (T )β Nβ (T ) = ∑

P∈Pn

w(P), (3.2)

where the sum ranges over the set of forests of planted 0-1-2-plane trees on [2,n] with the

following labeling rules and w(P) stands for the weight of P:

1. A single root is labeled by (x+ y)α+β

2 .

2. The root of a component with at least two vertices is labeled by α +β .

3. A degree one vertex other than the root is labeled by x+ y.

Proof. We begin with representing the sum on the left side over permutations in terms of a

sum over increasing binary trees. Let T be an increasing binary tree of Bn. We say that a

leaf is proper if it is neither an a-leaf nor a b-leaf. In view of the (a,b,α,β )-labeling, M(σ)

corresponds to the number of internal vertices having two proper leaf children, whereas

n−2M(σ)−1 equals the number of internal vertices having exactly one proper leaf child.

Consequently, we are supposed to label T by the following rules, which we call the first

modified (a,b,α,β )-labeling.

1. Label the leftmost leaf by a and label the rightmost leaf by b.

2. Any internal vertex on the path from the root to the a-leaf (other than the root) is

labeled by α . Any internal vertex on the path from the root to the b-leaf (other than

the root) is labeled by β .

3. For a pair of proper sibling leaves, we label the left leaf by x and the right leaf by y.

4. For a leaf whose sibling is not a proper leaf, we label it by (x + y)/2, no matter

whether it is on the left or on the right.

For example, for the tree in Figure 1, the first modified (a,b,α,β )-labeling is demon-

strated in Figure 5.
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1

4(α)

8(α) 6

9

2(β )

3(β )

5 7(β )

b

a x+y
2

x+y
2

x y x y x+y
2 b

x+y
2

Figure 5: The first modified (a,b,α,β )-labeling.

We now process to compute the sum of weights over Bn by utilizing supporting forests.

Let F be a supporting forest, that is, a forest of planted increasing binary trees on [n]. Let

us characterize the set of trees T in Bn with supporting forest F on [2,n]. There are two

choices for a planted increasing binary tree in F to belong to the left side (with the root

being an α-vertex) or the right side (with the root being a β -vertex).

For a single root, it may originate from an α-vertex in T or a β -vertex in T . These two

cases lead to the sum of weights

x+ y
2

α +
x+ y

2
β = (x+ y)

α +β

2
.

For a component of F containing at least two vertices, its root may originate from an

α-vertex or a β -vertex, so the sum of weights equals α +β .

Moreover, we can take a group action by swapping a proper leaf with its sibling that is

not a leaf. Keep in mind that the a-leaf and the b-leaf no longer appear in F . Let orb(F)

denote the orbit of F under this group action. Then let us compute the sum of weights of

T with a supporting forest in orb(F). This quantity can be derived from a labeling of a

representative of orb(F), that is a forest P of planted 0-1-2-plane trees.

Note that a proper left leaf with weight (x+ y)/2 is paired with a proper right leaf with

weight (x+ y)/2, summing to a weight x+ y. The above considerations suggest that we

should comply with the rules as stated in the theorem. This completes the proof.

Let us now turn to the sum on the right side of (3.1). A modification of the (a,b,α,β )-
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labeling is needed, which we call the second modified (a,b,α,β )-labeling. In this case,

both the α-vertices and the β -vertices are labeled by (α + β )/2. For example, Figure 6

gives the modified labeling for the two trees in B2.

a 2
(

α+β

2

)
x b

1

2
(

α+β

2

)
a y

b

1

Figure 6: The second modified (a,b,α,β )-labeling.

At this point, the sum on the left of (3.1) can be recast in terms of the first modified

(a,b,α,β )-labeling for increasing binary trees in Bn, and we are left with the task to es-

tablish the following relation.

Theorem 3.3. For n ≥ 1,

∑
T∈Bn

xxleaf(T )yyleaf(T )
(

α +β

2

)Nα (T )+Nβ (T )

= ∑
P∈Pn

w(P), (3.3)

where the sum ranges over Pn as in Theorem 3.2 and ditto the weight.

Proof. As before, we first consider the supporting forest of a tree in Bn, and consider which

trees in Bn share the same supporting forest F . Let T be an increasing binary tree in Bn

with the supporting forest F .

For a single root in F , it may originate from an α-vertex with a right leaf child labeled

by y, or a β -vertex with a left leaf child labeled by x. Given that all the α-vertices and

β -vertices are labeled by (α +β )/2, the two cases contribute a total weight of (x+y)α+β

2 ,

in accordance with the labeling of F .

For a component of F containing at least two vertices, its root may originate from an

α-vertex or a β -vertex. Thus we get a total weight of

α +β

2
+

α +β

2
= α +β ,

which coincides with the label of the root of F .
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For other leaves of T , we consider the group action that swaps a proper leaf with its

sibling that is an internal vertex. Strictly speaking, a proper x-leaf is paired with a proper

y-leaf, giving a total weight of x+ y. This group action gives rise to an orbit of F , which

can be represented by a forest of planted 0-1-2-plane trees with weights as designated in

the theorem. This completes the proof.

Next, let us recall the (a,x,y,z)-labeling of an increasing binary tree with the x-leaves,

y-leaves and z-leaves marking excedances, drops and fixed points of permutations respec-

tively, see [5]:

1. If a β -vertex has a left leaf child, then this child is labeled by z, signifying a fixed

point.

2. The rest of the leaves are labeled in the same manner as the (a,b,α,β )-labeling with

a replaced by x and b replaced by a.

For example, with regard to the (a,x,y,z)-labeling, the increasing tree in Figure 1 corre-

sponds to the following permutation in the cycle notation with the (a,x,y,z)-labels attached:

(8y4x9y6y1x) (2z) (5y3x) (7z) a.

Clearly, a derangement corresponds to an increasing binary tree without z-leaves.

We finish with a combinatorial proof of the following identity due to Ji, where Dn stands

for the set of derangements of [n].

Theorem 3.4 (Ji). For n ≥ 1,

∑
σ∈Sn+1

(−1)des(σ)

(
1
2

)lrmin(σ)+rlmin(σ)−2

= ∑
σ∈Dn

(−1)exc(σ). (3.4)

Proof. Let T be a tree in Bn+1 on {0,1, . . . ,n} with the (a,b,α,β )-labeling. Let F be the

supporting forest of T . Consider the set of trees that share the same supporting forest as T .

First, we observe a cancellation property. Note that F is a forest of planted increasing binary

trees on [n]. On the other hand, we may regard T as an increasing binary tree endowed with

the (x,y)-labeling for the Eulerian polynomials, that is, a left leaf is labeled by x and a right

leaf is labeled by y. In the end, we set x =−1 and y = 1.
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We claim that a cancellation occurs when F contains a single root. If F contains a single

root, then T has either an α-vertex with a y-leaf or a β -vertex with an x-leaf. These two

possibilities create a pair of trees with the same supporting forest and opposite signs, here

the sign of T is determined by the parity of the number of x-leaves. Moreover, such a pair

of trees possess the same quantity

lrmin(T )+ rlmin(T )−2,

and hence we are led to a cancellation in the sum on the left of (3.4), which implies that the

sum can be reduced to T whose supporting forests are fully planted.

Note that the (x,y)-labels of T are carried over to the forest F . This means that if two

trees have the same supporting forest (without single roots), then they must have the same

sign. Now we wish to compute the left side of (3.4) by classifying the supporting forests.

Clearly, a supporting forest of k components generates 2k trees in Bn+1.

On the other hand, a supporting forest F can be viewed as an increasing binary tree

on [n] by gluing the component together. Up to now, it remains to make use of the fact

that the labels carried over are precisely the same as the labels for the derangement poly-

nomials with respect to the (a,x,y,z)-labeling, except for the rightmost y-leaf. Thus we

may associate an x-label with an excedance and a y-label with a drop of the correspond-

ing permutation. Finally, a special attention has to be paid to the rightmost y-leaf of T in

Bn+1 subject to the (a,x,y,z)-labeling. Since y is set to 1 at last, there are no worries. This

completes the proof.

To conclude, we remark that the above combinatorial argument yields a refinement of

(3.4) by restricting the sum to

lrmin(σ)+ rlmin(σ)−2 = k.

Then the sum of the right side ranges over derangements with k cycles.
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